
 RAILWAYCABAL
Project Proposal

Team 12

Alex Bohlken

Abraham Dick

Noah Kenn

Qualen Pollard

Ryan Rodriguez

2

PROJECT DETAILS

Synopsis
Microservice based web-server framework designed to be scalable, secure,

extensible and easily deployable.

Description
Advancements in container-based technologies, such as Docker, combined

with the rise of cheap and accessible cloud-based services, such as Amazon

Web Services and Microsoft Azure, has led the ability for developers to easily

deploy web-based content distribution services across many server

instances. This is in contrast to traditional web-based technologies that have

relied on concurrency patterns for increasing performance. These older

technologies rely on a monolithic based architecture, leading to large

structures that make refactoring or modifying features difficult. Microservice

architecture attempts to overcome this by segmenting each responsibility of

a program into its own service and setting up a communication mechanism

between them. The result is a composite structure that can vary in language

and even platform between different responsibilities. Discrete services allow

systems to easily grow and be pruned as products and business services

change and grow without large refactoring efforts.

Unfortunately, long term scalability concerns are often beat out by costlier

upfront development and the relative simplicity and availability of

monolithic frameworks such as ExpressJS, Rails, and Django. RailwayCabal

will provide the same ease of access as these frameworks while providing all

benefits of the underlying microservice based architecture.

3

PROJECT DESIGN

Railway & Cabal
The code generation and server management tools are known as Railway.

The server framework architecture is known as Cabal. These two pieces of

software combine to create the complete server framework architecture.

Cabal is centered around a service called CORE. CORE is in charge of onlining

processes and managing permissions for all internal communications. A

service called CONTENT will be in charge of managing all user-facing data

generating services such as collections, and users. The process of onlining is

done over second channel communications and are referred to as internal

coms. See ‘Figure 1 -Service Architecture’ in Appendix.

Several important technical constraints have been made to ensure that

communication and granting permissions among services happens in a quick

and secure manner. Google Go has been chosen as the primary backend

development language due to easy concurrency handling and native support

for the communication mechanism gRPC. gRPC will be the only internal

communications method. This has been decided because its’ use of HTTP/2

binary serialization along with a well-structured messaging system known as

protobufs. Specifically, Cabal will use Proto3 as our protobuf interface.

As a result of these constraints, each service will follow standardized

practices. Each service will run inside a Docker container with a range of

exposed ports. Each service will have a custom process manager. This

process manager will implement the CORE gRPC client stubs that serve as all

internal communication methods. The process manager will update the

permissions table and then start the process binary. See `Figure 2` in

appendix. Upon success, failure, and error the process manager will report to

CORE. The service will then implement a gRPC server in which it can host its

own requirements through, also known as first channel communications, or

those between services. Designers of service may also provide a Go Package

to further abstract the gRPC communications from the programmer.

4

All service gRPC servers will report to client requests made by other services

or end-user requests via the API Endpoints or Webserver services. These two

services will be in charge of coalescing all user requests and providing the

HTTP/1.1 response to the user caller. CORE dispatches permissions to all

services attached that allow the service to implement the gRPC client stubs of

other services. An example of this being the interaction between the

Authentication service and the User service. Before credentials can be

granted, the Authentication service must make contact with the User service

and ensure that the user-given credentials match what is on record in the

User service database.

Almost all public requests will be internally routed through the CONTENT

service. This is where users of our framework will include their own services

and build out their product. The goal of Cabal is to provide an architecture

where attaching services is easy for the end user. The goal is to abstract away

as much of the microservice architecture as possible. As a result, if the user

decides to implement a monolithic service behind the CONTENT service, they

can make that choice. Otherwise, if the user wants to build out their own

microservices, Cabal has done the heavy lifting to get them started by

providing the ability to extend the CORE permissions model and

communication mechanisms. Additionally, four default and extensible

services have been provided: a logger, a user, an authentication, and a

collections service.

These four default services have each been designed to take advantage of the

Cabal architecture. Authentication is done via a hybrid token and session

design in which Websever or APIEndpoints makes a request, and if successful

the response includes two JWT tokens: an access token and a session token.

The access token will provide a mechanism to grant credentials to users

without having to check the database for each request and instead use a Go

Package to quickly check the token against the known keys and kids. If the

token is expired, then the session token can be used to renew the user’s

session for some amount of time before forcing the user to re-enter their

5

username and password. See Figure 3 for an example of New Token

Authentication.

The logger is made available via a Go Package that each service can quickly

use to connect to the Logger services’ gRPC server. Every service will be

given access to the logger by default. It serves as the backbone of error

tracing communication across the platform via dumping all data into a real

time series database and accessed via something such as Grafana that runs

alongside Cabal.

The collections service has been provided to support any sort of simple data

store needed and can be extended into n number of individual services. This

service has been optimized to store things such as blog posts and user

comments with minimal effort. With the help of Railway, the programmer

can easily extend the types of data that can be stored via a similar experience

to Ruby on Rails’ command line interface data store generator.

Throughout developing the architecture, Railway provides convenient

support tools. As laid out above, the goal of Railway Cabal is to abstract away

as much of the underlying architecture of the server as possible without

hindering the benefits of having a microservice based framework. Railway

provides a convenient way to translate a source program into a service that

can be connected to via gRPC by the Webserver. This includes tools that

Dockerize services using our process manager and tools to modify services

and configurations. For development purposes, the entire framework will be

able to be run locally without rebuilding Docker containers for each restart

via the process manager in Railway.

Following the lead of both ExpressJS and Ruby on Rails, Railway and Cabal

will be released via the MIT license. This has been made as a business

constraint because as a team we all believe in the open source model of

software distribution. As a framework, the only real value that Cabal can

provide is to be made free to modify and distribute as any user chooses so

long as they agree to the same.

6

PROJECT LOGISTICS

Milestones
MILESTONE ESTIMATION

Initial API, CORE Feature definitions Nov 2018

Use Case Diagrams, CORE Coms Definition, Process
Manager Complete

Late Nov 2018

Static Content Delivery, process mgmt model, Internal
Communications Model

Dec 2018

Content Delivery Coms Implementation Late Jan 2019

CORE services completeness, Integration testing and
docs, Impl’ plugin extension support

March 2019

Feature Complete, begin debugging, robustness testing,
proofing

Early April 2019

Packaging, Documentation, Delivery May 2019

Work Plan
CONCERN ASSIGNMENT

Public facing routing and sub-routing, static content
delivery, front-end

Alex B

IPC, Containerization, Process Management Abe D

Internal Communications, Statistics tracking Noah K

CORE, process permissioning Qualen P

Code Generation, System Logistics Ryan R

7

Budget
While deployment of RailwayCabal software might cost money via Amazon

AWS or Microsoft Azure compute time, there will be no development cost

and the completed software will be 100% operable without cost.

Ethical and Intellectual Property
The main ethical concern is security. We are providing a software library that

heavily depends on communication between services, some of which on the

same physical server and others on different servers. It is important that

when messages are passed between services that they cannot be intercepted.

It is also important that if one service is compromised that it cannot

compromise other services. Failure to meet these standards corresponds to

violation of several principles of The ACM Code of Ethics and Professional

Conducting, including but not limited to:

2.5 Give comprehensive and thorough evaluations of computer

systems and their impacts, including analysis of possible risks.

2.9 Design and implement systems that are robustly and usably

secure.

We will use two methods to satisfy these principles. First, we will be using

gRPC, which will bear most of the burden of security concerns in that it will

handle HTTP/2.0 calls. Because gRPC handles most of the lower-level

security issues for us, we only need to ensure that there are no high-level

security issues. High-level security issues should not be an issue as long as

two conditions are met. First, that our server framework is well-designed.

Second, that our server framework is well-tested. As long as messages are

being passed along expected chains and those chains do not allow other

services to be compromised, the security of the library itself should be

robust.

8

There is also a concern with respect to intellectual property. Our

dependencies, such as gRPC, are all open source. gRPC is licensed under the

Apache license, so our software must preserve the copyright and license

notices. Other dependencies will be handled accordingly. Failure to preserve

notices indicated the by the particular license would be a legal violation in

addition to an ethical one. For that reason, we will need to pay careful

attention to the licenses of our dependencies.

For the licensing of our own software, we are using the MIT License. The MIT

License maintains limitations on liability and warranty and also requires that

the copyright and license notices be maintained. In exchange, the derived

work may be distributed commercially or not as well as with or without

source code.

Change Log
Since the initial project description, none of the high-level details have been

modified. The overall architecture has remained the same.

GANTT CHART

Chart 1 - Project Schedule

10

Chart 2 - Resource Distribution Chart

11

APPENDIX

Figure 1 - Service Architecture

12

Figure 2 - Starting A Service

13

Figure 3 - Token Authentication

	Project Details
	Project Design
	Project Logistics
	Gantt Chart
	Appendix

